Modified Incomplete Cholesky Factorization Preconditioners for a Symmetric Positive Definite Matrix
نویسندگان
چکیده
We propose variants of the modified incomplete Cholesky factorization preconditioner for a symmetric positive definite (SPD) matrix. Spectral properties of these preconditioners are discussed, and then numerical results of the preconditioned CG (PCG) method using these preconditioners are provided to see the effectiveness of the preconditioners.
منابع مشابه
Comparative Analysis of High Performance Solvers for 3D Elliptic Problems
The presented comparative analysis concerns two iterative solvers for 3D linear boundary value problems of elliptic type. After applying the Finite Difference Method (FDM) or the Finite Element Method (FEM) discretization a system of linear algebraic equations has to be solved, where the stiffness matrix is large, sparse and symmetric positive definite. It is well known that the preconditioned ...
متن کاملPerformance Evaluation of a New Parallel Preconditioner School of Computer Science
The linear systems associated with large, sparse, symmetric, positive definite matrices are often solved iteratively using the pre-conditioned conjugate gradient method. We have developed a new class of preconditioners, support tree preconditioners, that are based on the connectivity of the graphs corresponding to the matrices and are well-structured for parallel implementation. In this paper, ...
متن کاملDirect and Incomplete Cholesky Factorizations with Static Supernodes
Introduction Incomplete factorizations of sparse symmetric positive definite (SSPD) matrices have been used to generate preconditioners for various iterative solvers. These solvers generally use preconditioners derived from the matrix system, , in order to reduce the total number of iterations until convergence. In this report, we investigate the findings of ref. [1] on their method for computi...
متن کاملCIMGS: An Incomplete Orthogonal FactorizationPreconditioner
A new preconditioner for symmetric positive definite systems is proposed, analyzed, and tested. The preconditioner, compressed incomplete modified Gram–Schmidt (CIMGS), is based on an incomplete orthogonal factorization. CIMGS is robust both theoretically and empirically, existing (in exact arithmetic) for any full rank matrix. Numerically it is more robust than an incomplete Cholesky factoriza...
متن کاملA Multilevel Block Incomplete Cholesky Preconditioner for Solving Rectangular Sparse Matrices from Linear Least Squares Problems
An incomplete factorization method for preconditioning symmetric positive definite matrices is introduced to solve normal equations. The normal equations are formed as a means to solve rectangular matrices from linear least squares problems. The procedure is based on a block incomplete Cholesky factorization and a multilevel recursive strategy with an approximate Schur complement matrix formed ...
متن کامل